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Abstract

This paper presents a simple approach to estimate the uncertainties that arise in

satellite retrievals of cloud optical depth when the retrievals use one-dimensional

radiative transfer theory for heterogeneous clouds that have variations in all three

dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty

of cloud optical depth retrievals. These estimates can help us better understand the nature

of uncertainties that three-dimensional effects can introduce into retrievals of this

important product of the MODIS instrument. The probability distribution of resulting

retrieval errors is examined through theoretical simulations of shortwave cloud reflection

for a wide variety" of cloud fields. The results are used to illustrate how retrieval

uncertainties change with observable and known parameters, such as solar elevation or

cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier

study---clouds appearing thicker for oblique sun--is indeed caused by three-dimensional

radiative effects.
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1. Introduction

Satellite measurements of the solar radiation reflected by clouds are often used to

retrieve cloud properties such as the amount of liquid water in the clouds and the size of

cloud droplets. Current retrieval algorithms are based on one-dimensional (1D) radiative

transfer theory, which assumes that there is a one-to-one relationship between cloud

reflective and physical properties. Common everyday experience, however, tells us that

clouds often feature fully three-dimensional (3D) structures with strong variabilities in

both horizontal and vertical directions. Radiative interactions among nearby elements of

heterogeneous clouds can upset the one-to-one relationships between cloud reflection and

physical properties, so any measured brightness can be associated with a variety of cloud

properties. Current retrievals avoid potential ambiguities by ignoring 3D effects and

using the clear relationships of 1D radiative transfer instead--but as numerous theoretical

studies (e.g., Davies 1984, Kobayashi 1993, Barker and Liu 1995) and several

observational results (e.g., Loeb and Davies 1996, Loeb and Coakley 1998) indicate, this

can introduce significant errors into the retrievals. A different approach to resolving

retrieval ambiguities is to determine not a single best-guess value, but rather, the

statistical parameters of the distribution of possible values• This approach has been used

recently to estimate leaf area index and the photosynthetically active radiation from space



(Knyazikhin et al. 1998a,Diner et al. 1999).The currentpaperexaminesthis statistical

approach for cloud optical thickness retrievals, focusing on the uncertainties that

horizontal cloud variability introducesinto retrievals basedon 1D theory. This study

thereby complementsearlier studies that examined the influence of vertical cloud

heterogeneities(e.g.,Li et al. 1994,Platnick 1997).

Understandingthe effects of using 1D radiative transfer theory is especially

important, because recent improvements in measurementaccuracy can lead to

comparableimprovementsin retrieval accuracyonly if the retrievals accountfor all

relevantphysicalprocesses(Figure 1).However,while thepossibility that3Deffectscan

causesignificant retrieval errors is widely accepted,the magnitudeof theseerrors in

varioussituationsisyet to bedetermined.This paperpresentsa first attempttoward this

goal: It describesa simple approachto assessingthe influence of horizontal cloud

variability on theoperationalprocessing(NakajimaandKing 1990,King et al. 1997)of

measurementsby the Moderate Resolution Imaging Spectroradiometer(MODIS)

instrument on board the TERRA satellite. In particular, the study examines the

probability distribution of retrieval errors for stratocumuluscloud optical depth and

describesa simple techniqueto set error boundsfor the MODIS retrievals. Figure 2

illustratestheseerrorboundsand showsthat while sucherrorboundscannotdetermine

theretrieval errorsfor individual pixels (for example,they do not show that the optical

2



thicknessis oftenoverestimatedon thesunlit slopeson the left sideof cloudbumpsand

underestimatedon the shadowyslopeson the right side), they can give statistically

representativeestimateson themagnitudeof theerrors•

The outline of this paperis asfollows: First, Section2 describesthetestdataset

usedin theproposedassessmentalgorithm•Then,Section3 outlinesthealgorithm'sbasic

approachandalso usesradiativetransfersimulationresultsto highlight variousfeatures

of the retrieval errors•Finally, Section4 summarizesthe paper'smain conclusionsand

outlinessomepossibledirectionsfor futurework.

2. Test dataset

Since the proposed technique is based on a climatology of 3D effects that are

obtained through radiative transfer simulations, it is very important to ensure that the

simulations be representative of the processes that occur in the real atmosphere. The key

issue is not whether 3D radiative processes can be calculated accurately--results from the

I3RC project (Cahalan et al. 1999) strongly suggest that the Monte Carlo radiative

transfer code used in this study is highly accurate--but whether the set of examined

clouds is truly representative of the real clouds observed by satellites.
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The biggest challengein building a climatologically representativeset of 3D

cloud fields is that there are no suitable measurements of full 3D cloud structures. In-situ

aircraft measurements give only 1D transects, and passive measurements of the radiation

leaving a cloud field cannot give detailed information on internal cloud structure. In

addition, these passive measurements can be affected by the very same 3D effects we are

trying to understand. Although in principle, active sensors (i.e., lidars and cloud radars)

could determine 3D cloud structures, current systems give information only in the

vertical and one horizontal direction, leaving cloud variability in the other horizontal

direction unknown. Evans et al. (2000) presented a first attempt to overcome this

limitation by developing a stochastic cloud model to extend the measured cloud fields to

the unknown horizontal dimension. The present study examines the radiative properties

of 3D cloud fields that were generated by a variety of stochastic cloud models: the

bounded cascade model (Cahalan et al. 1994, Marshak et al. 1994), the fractional

integration model (Schertzer and Lovejoy 1987), and a slightly modified version of the

fractional Brownian motion model as in Barker and Davies (1992).

Although the examined stratus/stratocumulus cloud fields were generated

artificially, they incorporate knowledge obtained by observations in two ways. First, the

models were created so that they reproduce systematic features observed in real clouds,

most notably their power-law scaling (e.g., Cahalan and Snider 1989, Davis et al. 1994).
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The simple scaling (also called self-affinity) meansthat the averagechangein cloud

properties(e.g., optical depth)over distancesAx and 2_Ax (with & > 0) can be related

through (e.g., Vicsek, 1989, p. 33)

(1)

where the - sign means statistical equality and < > indicates ensemble averaging over

many realizations. The scaling parameter H e [0,1] characterizes spatial correlations in

cloud properties. (H = 0 corresponds to jumpy, discontinuous statistical processes, while

H = 1 indicates an almost everywhere differential process.) Typical H values for

stratocumulus clouds are between 0.25 and 0.4, usually close to 1/3 (Marshak et al.

1997).

Secondly, real observations were also used in stochastic cloud modeling by

choosing the models' input parameters such that they represent the observed average

characteristics and variability of cloud properties. Because the main goal for this study

was to generate a set of scenes that seeks to cover the natural variability of stratocumulus

cloud properties, the clouds range from thin to thick, from almost homogeneous to very

heterogeneous, from overcast to partially cloudy, and from flat to bumpy. Thus, all

results presented in this paper are based on simulations for at least 300 scenes that each

cover (51.2 kin) z areas at 50 m resolution. Each scene was generated using a different

random number sequence and a different set of cloud variability parameters. The
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variability parameterswere chosenfor each sceneaccording to a random uniform

distribution that is basedon the rangeof variability reportedin Barkeret al. (1996)(see

Table l). Backward Monte Carlo simulations then calculated the reflection of l0

randomly chosenpixels in eachscene--and so the presentedresultsare all basedon

simulationsfor atleast3,000pixels.

Onceacomprehensivedatasetof suchscenesis put together,realisticstatisticsof

3D radiative effects can be calculated by weighting data points from each scene

accordingto how often the scene's parameterscan beobservedin real clouds. (As a

result,data from scenesresemblingtypical cloudswill receive large weights,whereas

data from scenessimilar to rare clouds will carry much lessweight in the statistical

calculations.) For aneasierillustration of theproposedtechnique,all datapoints in this

paperaredisplayedwith anequalweight andareaccordinglygiven equalweight in the

statistical calculations. Sensitivity studies(not shown) indicated that while applying

realistic weighting schemes(e.g., assigninglessweight to increasinglyheterogeneous

scenes)canchangethemeanandstandarddeviationof retrievalerrors,it doesnot modify

the qualitative featuresdiscussedin this paper. In the future, we plan to calculate

climatologically representativestatisticson retrievalerrorsfor severalspecific locations

(such as the Atmospheric Radiation Measurement(ARM) program site in central
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Oklahomaand in the WesternPacific) by comparingthe variability of simulatedscenes

to variabilitiesobservedin cloudradarmeasurements.

Thepresentedsimulationsassumenonabsorbingcloud dropletswith a C.1phase

functionanddonot considertheeffectsof cloud-freeair andtheunderlyingsurface.The

cloud fields arespecifiedat a 50m resoIution,belowwhich scalethefields areassumed

to behomogeneous.Theresultsof Marshaket al. (1998)showthatusingthisassumption

doesnot significantly changethecalculatedcloudradiativeproperties.Most simulations

presentedin this paper,however,obtainedcloud reflection for (250 m)2pixels, thereby

matchingthe resolution of the MODIS instrument.Except when noted otherwise,all

presentedresultsarefor 60° solarzenithangle.

3. Estimation of retrieval uncertainties

3.1 Magnitude of retrieval errors

As mentioned in the introduction, the main goal of the presented technique is to

estimate the influence of 3D radiative effects on MODIS optical depth retrievals and to

set error bounds on the retrieval results accordingly. The algorithm proposed to set the

error bounds is illustrated in Figure 3, which displays simulation results for a wide range
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of clouds.The operationalMODIS algorithmworksby determiningwhich cloud optical

thicknesscanyield the measuredreflectivity value accordingto 1D radiative transfer

theory, i.e., accordingto the solid line in Figure 3. The proposedassessmenttechnique

then estimatesthe retrieval uncertainty by considering a narrow brightness interval

around the observed radiance (which representsthe measurementaccuracy and is

indicatedby horizontaldashedlines in thefigure) andcalculatinghow spreadout thetrue

optical thicknessvaluesyielding brightnessesinside the narrow interval are in the 3D

simulations.

Figure4 showsthat generally,the standarddeviation(cy)of the 't-retrieval errors

(_:)--defined as

o - e,-(e) 2)
N-1

(2)

with N being the number of pixels--increases with cloud reflectivity. This tendency is

consistent with the findings of Pincus et al. (1995), who showed that retrieval errors

caused by factors other than 3D effects increase with cloud brightness as well. The initial

increase seems fairly intuitive, because the influence of 3D effects (which push the

individual points away from the 1D curve) increases with the original 1D brightness it

modifies. At larger brightnesses the increase accelerates because of the flattening of the

1D curve in Figure 3: Since the brightness hardly changes with "cfor thick areas, a given



largebrightnesscanoccur for a widerangeof '_ values. This can be interpreted as a sign

that at bright (that is, thick) regions, the optical thickness and reflectivity (/) become

decoupled from each other, and the brightness is determined not as much by '_, as by the

local geometry that creates 3D effects (e.g., whether the examined slope tilts toward or

away from the sun). Finally, the spread of retrieval errors remains fairly constant at the

brightest regions, because the 1D optical thickness retrievals are constrained by the

arbitrary limit of not retrieving optical thicknesses greater than 100. Thus, further

increases in cloud brightness do not lead to larger retrieval errors.

3.2 Magnitude and sign of retrieval errors

In addition to cloud brightness, retrieval uncertainties also depend on other

factors, such as the sun-view geometry and the spatial resolution of reflectivity

measurements. For example, Figure 5 shows that, in agreement with the findings of

earlier studies (e.g., Chambers et al. 1997, Davis et al. 1997, Zuidema and Evans 1998),

the influence of 3D effects decreases with coarsening resolution, and at really coarse

resolutions a 1D heterogeneity effect called the plane-parallel bias (Cahalan et al. 1994)

becomes dominant. As a result, retrievals can be expected to be most accurate at

intermediate resolutions in the order of a few hundred meters to a few kilometers (Davis
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et al. 1997).However, as Figure 6 shows,retrieval errorsdue to 3D effects increase

sharplyfor moreobliqueilluminations.This tendencycausestheoverestimationsthat are

dueto 3D effectsto dominateover theunderestimationsthat aredueto theplane-parallel

bias,evenatresolutionsascoarseas30km (LoebandDavies1996).

Examinationof thecumulativehistogramof retrievalerrors,

F(AI') = Prob(Error < A_'), (3)

can offer additional insights into the influence of 3D effects. Figure 7 shows that the

cumulative histogram value of 0.5 occurs for retrieval errors close to 0, which means that

underestimations and overestimations occur about equally often. This is especially

informative for oblique sun, because it indicates that the 3D effects are caused primarily

by short-range interactions among nearby cloud elements. (If large scale interactions had

dominated, thick areas would have cast long shadows, causing underestimations for large

areas behind them and thus making underestimations more frequent than

overestimations.) The figure also shows that when only large retrieval errors are

considered, underestimations are more frequent for high sun and overestimations prevail

for oblique sun. This is consistent with the sign of overall biases that are apparent in

Figure 6.
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On the topic of systematicretrieval biases,Figure 8 shows the relationship

betweenthe meanoptical thicknessof all pixels that havea certainnadir reflectivity in

3D simulations

'_v(1) = E(rl reflectivity = I), (4)

where E is the mathematical expectation and the optical thickness retrieved using 1D

theory ('r,D(/)). The figure suggests that 1D retrievals give unbiased results for pixels that

are not too bright. For brighter areas, however, using 1D theory results in an

overestimation of the true mean optical thickness: When 3D effects enhance the

brightness of thick slopes tilted towards the sun, 1D retrievals do not know about the

tilting and must therefore assume very large optical thicknesses to account for the large

brightness values. The fact that overestimations increase with cloud brightness is

consistent with the observations of Loeb and Davies (1996) further supports their

assertion that the biases they observed are indeed caused by 3D radiative effects.

The fact that 't retrievals based on single reflectivity values cannot yield accurate

results for thick or bright areas is also illustrated in Figure 9. The figure shows that the

l,,,_o,,('r) = E(13o I optical depth = "t:) (5)

and the r,,,,.,,,,(I) curves diverge for "c > 25 (i.e., I > 0.65), indicating that the mean r-I

relationship becomes nonreversible (Knyazikhin et al. 1998b).
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In addition to considering the basic statistics of the true 't distribution as a

function of cloud brightness, one can also examine the full x histograms for fixed I values

(Figure 10). (Similar histograms of leaf area index values can be found in Knyazikhin et

al. (1998a).) The histograms clearly illustrate the tendency shown in Figure 4: that the

brighter a pixel is, the wider the histogram of possible _true values is, and so the harder it

is to estimate the pixel's true optical depth. Figure 10 also shows that the histograms can

be quite asymmetric, i.e., underestimations and overestimations follow different

probability distributions. This asymmetry is especially noticeable for dark pixels (I =

0.3), where the histogram's tail on the left side is almost completely missing. (This tail

contains pixels that are extra bright because they are on a sunlit slope.) Naturally, any tail

on the left is limited by the fact that '_ cannot go below zero. However, Figure 10 shows

that the histogram does not reach this limit, which means that another factor must restrict

the tail on the left side well above the zero value. The fact that the tail on the left is

smaller for less bright pixels can be explained as follows: While a pixel in bright (and

generally, thick) areas can gain significant extra illumination if the pixel in front is

thinner, a pixel in a darker (and generally thinner) area is not affected much by having a

thinner pixel in front, because even if the neighbor in front were not thinner, it would still

be fairly thin (like our pixel) and would allow plenty sunlight to reach the side of our

pixel.
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The main practical implication of the resulting skewnessis that since the

distribution of retrieval errors is asymmetric, optimal error bounds should be set

differently for underestimationsand overestimations.This impIication is illustrated in

Figure 11, which showsthe histogramsof the differences ('_true " "_retrieved)" 'l_truecan be

considered a random variable corresponding to random pixels with brightesses in a

narrow interval around the I = 0.6 value, and %ctr_eveacan be considered a deterministic

number retrieved from I = 0.6 using 1D radiative transfer. The figure shows that the

standard deviation is strongly influenced by the few pixels with large difference values,

and as a result, when the actual difference distribution is approximated by a Gaussian

curve, this curve will be too wide. Consequently, while the [-or,o] interval between the

dotted lines would contain 68% of the data according to the Gaussian curve, the interval

contains a much higher percentage of points in the actual distribution.

The correct error bounds were calculated following standard statistical techniques

(e.g., Cowan 1998, p. 119). These empirical error bounds were set to ensure that the error

for a randomly selected pixel lies inside the bounds with a 95% or 68% probability

(which we denote by _), and lies outside the bounds on either side with a probability of

(1-(,)/2 (= 0.025 and 0.16 for o_= 0.95 and 0.68, respectively). In practice, the bounds for

underestimation (B,) and overestimations (B,,) were determined empirically from the

equations
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B u

IP(Az')'d(AT) 1-a
2

(6)

and

iP(Az).d(Az) = 1 - a
2

B,,

(7)

where P is the probability density function.

Figure 12 shows the error bounds calculated empirically for underestimations and

overestimations, as well as the bounds estimate using the Gaussian assumption. The

figure indicates that often there are significant differences between the three error

bounds. (The saturation of overestimation error bounds can be attributed to the fact that

retrievals are limited optical thicknesses smaller than 100.) The figure also shows that the

underestimation error bounds drop to zero at bright areas, which indicates that

underestimations become very rare in these areas and occur for a smaller percentage of

pixels than the percentage that one would expect to be excluded by the 95% and 68%

level error bounds on each side of the error histogram (2.5% and 16%, respectively).

4. Conclusions

This paper presented results from a study that seeks to estimate the uncertainties

that arise in satellite retrievals of cloud optical depth because retrievals are based on ID
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radiative transfer theory and thus do not consider the effects of horizontal cloud

variability. As a first step toward this goal, the paper examined the probability

distribution of retrieval errorsdue to heterogeneityeffects, asobtainedfrom radiative

transfersimulationsovera widevarietyof heterogeneousscenes.Basedon thesimulated

scenes,theRMS errorof optical thicknessretrievalsfor (1 km)2pixelswereestimatedto

be in therangeof 3 to 5 for a solarzenithangleof 60°. The estimated error distributions

were used to develop a simple technique that can set error bounds for operational cloud

property retrievals. Figure 13 illustrates an example of error bounds estimated by

applying the technique to MODIS Airborne Simulator measurements.

The simulation results indicated that the retrieval uncertainties due to 3D radiative

effects tend to increase with cloud brightness and solar zenith angle. For example,

retrievals for 60 ° solar zenith angle gave unbiased overall averages for areas with nadir

reflectivities less than 0.6, but the average optical thickness was increasingly

overestimated for brighter regions. This behavior is consistent with the observations of

Loeb and Davies (1996) and provides a further indication that the biases they observed

were indeed caused by 3D radiative effects.

Although the results showed that retrievals over relatively dark areas can be

expected to be free of overall biases, the results also indicated that these areas can still be

affected by another complication: that retrieval errors have skewed probability
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distributions.This finding is important when the uncertainty is characterizedby error

boundsfor specificconfidencelevels,sinceit showsthat optimalerror-boundsshouldbe

setseparatelyfor underestimationsandoverestimations.

While the scenesusedin thecalculationscovera wide rangeof observedcloud

field properties,theycannotbeconsideredclimatologically representative,sinceit is not

known which scenesare important becausethey resemble real clouds that occur

frequentlyandwhich scenesarelessimportantbecausethey resemblevery rareclouds.

Thus,thenextstepin quantitativelyestimatingtheuncertaintiesof satelliteretrievalswill

be for us to assignweights to thesimulatedscenesby comparingtheir structureto radar

measurementsover theARM sitein centralOklahomaandin theWesternPacific.

Finally, we plan to extendthe presentedapproachso that it estimatesretrieval

uncertaintiesby consideringnot only the brightnessof eachpixel, but also the spatial,

angular,andspectralvariability of cloudreflection.Our currentefforts seekto determine

whether the influence of 3D effectscan be estimatedusing the phenomenonthat 3D

effects enhancelocal brightnessvariability more strongly at absorbingthan at non-

absorbingwavelengths(Oreopouloset al. 2000).Promisingpreliminary results suggest

that the reliability of estimatederrorboundscanbegreatly improvedby comparingthe

localvariabilitiesmeasuredat0.6pmandatthenewMODIS wavelengthat 1.6gm.
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Tables

Table 1. Ranges considered for various parameters of cloud optical thickness variability.

Parameter H 0.25 - 0.5

Probability of partial cloud coverage 0.5

Cloud fraction for broken cloud scenes > 0.7

Scene-averaged optical thickness 5.0 - 20.0

v=(Mean/Stdev) z overcast scenes 2.0 - 25.0

broken cloud scenes 0.5-4.0

Shape of optical thickness histogram Modified Gamma distributions
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Figure captions

Figure 1. Root-mean-square (RMS) error of optical depth retrievals. The dashed line

shows the errors when all the relevant physical processes are fully represented in

retrievals based on 1D radiative transfer theory (1D real clouds). Note that the RMS tends

to zero as the observational accuracy increases, indicating that this situation is a "well-

posed" problem. In contrast, the solid line corresponds to 3D real clouds, and the RMS

does not tend to zero even for perfectly accurate observations. This is an "ill-posed"

problem (Twomey 1977). The figure is based on a sample set of radiative transfer

calculations carried out at 250 m resolution for 60 ° solar zenith angle.

Figure 2. Example for estimating the uncertainty of'_-retrievals at 1 km resolution. The

error bars indicate the estimated standard deviation of retrieval errors, which, assuming a

Gaussian frequency-distribution of retrieval errors, contain the true a: value with a 68%

probability. (In Gaussian distributions, the confidence level corresponding to one

standard deviation is around 68%.) The solar zenith angle is 60 ° , and the sun is on the left

side.
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Figure 3. Comparisonof 1Dand3Dnadir reflectivitiesover (250m)z pixels for 60" solar

zenith angle. The interval between the two dashed lines schematically illustrates the

accuracy of observations.

Figure 4. Dependence of the standard deviation of retrieval errors (_) of cloud optical

thickness on cloud reflectivity. The bold curve shows a polynomial fit of the actual

results.

Figure 5. Resolution dependence of retrieval errors. The mean error (_) is defined simply

1
_e_, where the individual pixel retrieval error e, can be either positive or

as

negative, and c_ is defined by Equation (2).

Figure 6. Mean and standard deviation of retrieval errors for various solar zenith angles at

250 m resolution.

Figure 7. Cumulative histogram of retrieval errors defined by Equation (3), for 250 m

resolution for 15 ° and 75 ° solar zenith angles.

26



Figure8. Meanof trueoptical thicknessesin heterogeneousscenes(3D), andthevalue

retrievedusingone-dimensionaltheory(1D).

Figure 9, Comparisonof the I,.e..('c) and the r,.e..(I) curves obtained from averaging over

all available pixels in 3D simulations for 60 ° solar zenith angle and 250 m resolution.

Figure 10. Histogram of true optical thickness values for various reflectivity intervals.

Figure 11. Histogram of the difference between true and retrieved '_ values for I = 0.6

(continuous curve), and the actual histogram's approximation by a Gaussian distribution

that has the same mean and standard deviation (dashed curve). The dotted vertical lines

mark the histograms' standard deviation, which is the error bound for 68% confidence

level for the Gaussian histogram. The 68% error bounds for the actual histogram are

marked by continuous vertical lines.

Figure 12. Absolute values of error bounds for various confidence levels: (a) 95%

("= 1.96 _"), and (b) 68% ("= 1 _").
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Figure 13.Errorestimatesfor a (35km)2field of marinestratocumulusclouds:(a)

original reflectivity field measuredat50m resolution,and(b) estimatederrorboundsfor

optical thicknessretrievalscarriedoutat 1km resolution.Theerrorbondsweresetto

containtheactualretrievalerrorswith a68%probability.

28



o0

>

O

O

oo

n-

10

2

0
10

1 n !

1+3D I----e--- 1D

=°[_=o°==°

"_'°°"°'°°r_°=°

Well-posed problem ""--n ............
"'''_1-===..

°-OO.oo_o

I , n n I , , , I , , _ i , , , _

8 6 4 2 0

Relative error of observations (%)

Figure 1.

29



4O

35

3O

25

20

10

5

0

' ' I I I I ' ' ' ' I

True cloudopticalthickness|
[] Retrievedoptical thicknes Iwith error bounds

, , , I , , , I I I I I I I _ _ _ J 1 , ] _ _ I

5 10 15 20 25

Position (km)

Figure 2.

3O



.o

0.8

•- 0.6
0
(_

._-
-_ 0.4

Z

0.2

0

I 3°l--1D

0 20 4O 60 80 100

Optical thickness

Figure 3.

31



20 ' ' ' I ' ' I ' ' ' I ' ' ' I ' ' '

e

s

0 . ' o04 06 08

Nadir reflectivity

Figure 4.

32



cO

O
I.,_

Q)

>

.i

Q)

O

"6"
V

>

cO

t-

v

l--

12

10

8

6

4

2

0

-2

-4
0.01

Highest resolution of Resolution of operational
MODIS measurements MODIS retrievals

I | I | I O I I i I $ | i I i O I B | | | | | | I I I

_L

0.1 1 10 00

Resolution (km)

Figure 5.

33



0...

(D

"F.,,.

+.-'
L_

""0

v

-0._,

t-

v

20

15

10

-5 !

0

i-1
/

J

13- I_-" "- -- n"_ "P

I , , I , , I , , I , , I

15 30 45 60 75

Solar zenith angle (o)

i

90

Figure 6.

34



1

I

I0.8

E 0.6

F

_ o.4

"5 "
E
= 0.2

(.3

0
-20 -15 -10 -5 0 5 10 15 20

Retrieval error (Ax)

Figure 7.

35



(/}
o_
(D
¢-

c"

0

100

80

60

40

20

0
0.4 0.6

Nadir reflectivity

Figure 8.

35



0.8

._z,
2 0.6
.4...#
0

-o 0.4

z

0.2

0

_]rnean("E)

..... Trnean(I )

0 10 20 30 40 50

Optical thickness

60 7O

Figure 9.

37



t-

"10

.m

..Q

..Q

£
13_

mean = 4.3
stdev = 0.8

mean = 11.1
stdev = 5.2

mean = 22.0
stdev = 7.3

5 10 15 20 25 30

True optical thickness

35 40

Figure 10.

38



C

"I0

.i

..Q

.Q
0

O_

0.12

0.1

0.08

0.06

0.04

0.02

0
-30 -2O

i Actual data

-- -- - Gaussian approx.
(# = -0.2, _ = 7.3)

-10 0 10

Optical thickness difference

2o 30

Figure I 1.

39



m

"0
c"

0

L_

0

w

40

35

30

25

2O

15

10

5

0
0

a

-- e- - Overestimation

----o--- Underestimation

+ Gaussian

0.4 0.6

Nadir reflectivity

I ' I I I

Figure 12a.

40



40

35

30

25
C
-s
O

_o 20

O
,.. 15

W

10

5

0

' ' I ' ' ' t

b

-- e- - Overestimation

---.E}--- Underestimation

Gaussian

! I | | a I I I l i i

F

0

-4)-- --0-- --

I I I I I

0.8

Nadir reflectivity

Figure 12b.

41



Figure 13a.

42



J

T

1 2 3 4

Uncertainty or retrieved optical thickness

Figure 13b.

43



Popular summary

Statistical Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused

by Three-Dimensional Radiative Effects

Tamds Vdrnai and Alexander Marshak

In order to better understand the Earth's atmosphere and to make our predictions

about weather and climate more reliable, it is very important to know exactly what clouds

are like. Satellites measuring the solar radiation reflected by clouds offer excellent

opportunities to determine various cloud properties such as cloud optical thickness. (The

optical thickness reveals how easy it is for sunlight to pass through a cloud without being

scattered or absorbed by cloud droplets.) This paper presents a simple approach that uses

theoretical simulations to estimate the uncertainties that arise in optical thickness

retrievals, because current data processing algorithms do not consider how horizontal

changes in cloud properties influence the radiation measured at a given point. For the first

time, preliminary error bounds are set to estimate the resulting errors for stratocumulus

clouds. These estimates can help us better understand the uncertainties that horizontal

cloud variability introduces into retrievals of cloud optical thickness, an important

product of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on

board the Terra satellite. The paper also examines how retrieval errors tend to change

with known and observable parameters, such as solar elevation or cloud brightness.


